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Abstract. A general analysis of the Boltzmann equation is undertaken for the non-degenerate
electrons in low-dimensional system interacting with bulk acoustic phonons. We derive
expressions for symmetric and antisymmetric collision operators for electrons confined by an
arbitrary quantizing potential. These expressions are universal and can be applied to three-, two-
or one-dimensional electron gases. As was shown in our previous paper (part 1) the kinetics of
the low-dimensional electron system is qualitatively different at low and high lattice temperatures
due to the kinematic peculiarities of the electron—acoustic-phonon interaction. Here we present
the Boltzmann equation to describe the non-equilibrium electron distribution in low-dimensional
electron systems under different external conditions which are of physical interest and which
will be investigated in the following paper, part IIl.

1. Introduction

In the previous paper [1] (hereafter referred to as I) the basic kinematics of the interaction
between electrons completely confined in a quantum wire (QWI) and bulk acoustic phonons
via the deformation potential was described in depth, as an essential pre-requisite for a
discussion of hot-electron transport. The next step is the examination of the Boltzmann
equation and the form of its solutions, which is the topic of this paper. In section 2
we describe the Boltzmann equation in terms of symmetric and antisymmetric distribution
functions. The properties of the antisymmetric collision operator and the conditions under
which a momentum relaxation time can be defined are discussed in section 3. Section 4
deals with the general form of the symmetric collision operator for quasi-elastic processes,
which is extended to inelastic processes in section 5. The results are summarized and
discussed in section 6.

2. General expressions

We will assume in the following that we are dealing with a non-degenerate, spatially
homogeneous 1D electron gas. For the stationary case the Boltzmann equation has the
form

eE, dF,(ky)

7 di, =1F, (k) (2.1)

1 Permanent address: Institute for Semiconductor Physics, 252650 Kiev, Ukraine.
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where F, (k) is the electron distribution function in sub-bandE, is an applied uniform
electric field and all other notations here and below are the same as in the previous paper |.
The collision operator F, («,) is given by

fFv(Kx) = Z Z Z[W\ﬂv(/{)’w Kx, q)Fv’(K;) — W (ky, K)/p q)FU(KX)] (22)

vk, q
where
Wy (kxs ks @) = W (kes k0, @) + W (e KL )
, 2 , , _
Wi e, 165, @) = = IM (e, 1l @1 (Ng + 3 3 )8 (6w () — eu(kce) oy, (2.3)
On substitutinngv,(Kx,/cjc,q) from equation (2.3) into equation (2.2) we obtain, after

summation overk, with the use of the Kronecker delta functiofs .+, the following
expression

[F,(c) =) w(@)G2 (@ Fy (e + ¢ (Ng + 1) — F, (1) Ng]
voooq

Xa[gu’(’(x +qx) — ey(Kky) — ESQ] + [Fu’(Kx - QX)Nq - Fv(Kx)(Nq + 1)]

Xa[sv’ (Kx - Qx) - Ev(Kx) + ESC]]} (24)
where
752
w(gq) = woq wo = ——=. (2.5)
pVos

For the solution of equation (2.1) let us represent the distribution fundfjgn,) as a
sum of symmetric (even) and antisymmetric (odd) parts

Fy(kx) = F/ (kx) + F, (kx) (2.6)
where

Ff (ko) = 3[Fy (k) 4+ Fo(—k)] (2.7)

Fy (ko) = 3[Fy(k) — Fy(—k)]. (2.8)

Because the functio# («,) is an even function of, and is related to the state, (,) we
can consider that

F;_(Kx) = Fou(&v(kx)). (29)

The antisymmetric functiorF, («,) has to be proportional ta,, F, (x,) « «,. This is

a unigue feature of the 1D electron gas (it is true also for longitudinal (along a magnetic
field) transport of electrons in a quantizing magnetic field). In 3D or 2D electron gases
the representation of the distribution function in the form of equation (2.6) is equivalent
to an expansion in a series of Legendre polynomials with argument equal to the cosine of
the angle betweer and E, and F*(x) contains the sum of all even or odd harmonics,
respectively. As a rule, it is quite a good approximation in these cases to truncate these
series beyond the first terms for even and odd functions (for details see, for example, [2]),
namely F* (k) « (k- E)? and F~ (k) « (k - E), and all other harmonics are ignored.
For a 1D electron gas only the linear harmonic for the odd funcfigrx,), which is
proportional tok,, exists. All other odd harmonics can be expressed through the first one,
becausec?+! ~ g (kx)k, for any integern. Hence, we can present the antisymmetric
function F (k) in the form

F (k) = Ky fulen (k) (2.10)
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without any restriction of generality. The same generality is true for the symmetric function
Ff (k) in equation (2.9).

Making use of equations (2.6), (2.9) and (2.10), we obtain the following system of
kinetic equations:

_e? W =IF (k) (2.11)
E, dF (k, A
—eﬁ dK(" ) _ o) (2.12)
where
~ _ 2 _ qx fv’[gv’(/(x + QX)] :|
[F; (1) = —Fy(icy) Z ; w(q)G?,(q1) ”Nq (1+ K) ey WMt 1)

Xa[gv’ (Kx + Qx) - gv(Kx) - ESC]]

qx fv’[gv’(Kx - CIX)]
+ [(N" +0 - (1_ K> Fulen(e) N"}

x8[ey (kx — qx) — &,(ky) + Esq]} (2.13)

[Fo,(e, () = Y Y w(@)G2, (qu){{ Fowles (kr + @)](Ng + 1) — Fou(£4(kc)) Ng}
vioooq
X(S[SU/ (kx +qx) — &0(Kx) — ESQ]
+{F0v’[5u’(/<x - CIX)]Nq - FOv(Ev(Kx))(Nq + 1)}
x8[ev (kx — gx) — u(kx) +hsql}. (2.14)
Some general conclusions can be drawn concerning the antisymmetric collision operator in
equation (2.13).

3. Properties of the antisymmetric collision operator

If the electron kinetic energy («,) in sub-bandv is within the range
g1(ky) = &p(ky) — Wy, > (8m*s?Wo)/? (3.1)

then, in accordance with paper | (equations (5.3) and (5.26) in I), the electron—acoustic-
phonon interaction is quasi-elastic both for intra-sub-band and for inter-sub-band scattering.
To calculate the relaxation rateF; («,) for this case we can neglect the phonon energy
hwgq in the arguments of the delta-functions in equation (2.13) (the elastic approximation)
and we obtain

~ F(k, F (k,
IF;<KX>=—Z< e ”(K)> (3.2)

) 15y

v

where
1 2 4 4
m = Xq: w(CI)Gw'(QJ_)(ZNq +1 <1+ 21, + ZKX) 8[81)’(/()5 +4qx) — 8v(Kx)]- (33)

Here the upper sign corresponds to scattering out ef atate in the sub-band and

the lower sign to scattering into the, state due both to emission and to absorption of
acoustic phonons. Equations (3.2) and (3.3) show us that, in a 1D QWI, even in the elastic
approximation, we have a set of relaxation timéﬁé) («,) to describe the relaxation of the
antisymmetric functionF” (x,) in sub-bandv rather than one momentum relaxation time.
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However, only one relaxation time exists if the 1D electrons occupy only the first sub-band
(v =v" =1), or in the case in which the produab{g)(2N4 + 1)] in equation (3.3) does

not depend on the, component of the phonon wavevectgr Situations in which this
product does not depend gn will be analysed later. For both these cases equation (3.2)
is transformed into the form

[F; (k) = —F; (k)

(3.4)

Ty (Kx)
where the momentum relaxation timg(k,) is given by

1

T1(Kx)

=Y w(@)G2(g)@Ny + 1) [1 - (1+ Z)} Slealis +40) —e10e)]  (3.5)
q

X

for the case of occupation only of the first sub-band= v = 1) and
1

Ty (Kx)

=YY w@)G2(q) Ny + Dilev (ks + ¢0) —es(k)]  (3.6)
v'oooq

for the case in which the product(q)(2N, + 1) does not depend op,. To derive
equation (3.6) from equation (3.3) we have used the following relation:

Z (1:l: ZX> Doy (kx £ QX)S[wevn(Kx + CIX) - <P0] =0 (37)
qx X
which is true for arbitrary even functions,,, and¢,,,, and forgy which is independent
of ¢.. As a consequence of equation (3.7), only scattering from atate contributes to
the momentum relaxation time in equation (3.6) and the momentum relaxation time is equal
to the scattering time. Of course, if the above-mentioned product does not depend on
as well in equation (3.5) then the second term in square brackets in equation (3.5) will be
eliminated due to the property described by equation (3.7) and equation (3.5) will coincide
with equation (3.6) fon’ = v = 1.

If the electron kinetic energy in sub-bamds within the range

g1 (k) = &,(k,) — W, < (8m*s?Wo)'/? (3.8)

then the electron—acoustic-phonon interaction is inelastic for intra-sub-hadne= (v)
scattering and quasi-elastic for inter-sub-bamntl £ v) scattering. Then, as was shown
in paper |, we can use the relationship > |g.| (see equation (5.5) in I) to calculate the
term with v’ = v in the sum of equation (2.13); that is, we can gut- ¢, for this term
and we can use the elastic approximation to calculate termswigh v in this equation,
namely we can negleétw, in the arguments of the delta-functions for these terms. Making
use of these approximations we obtain for the antisymmetric collision operator

P F (ko) Fo (k) Fy (k)
[F(6,) = = — v - 3.9
v ) Tov (Kx) V/¢V<T:$)(Kx) Tv(’v)(KX)> (39
where
1 _
= w(g)G?,(@INy, 86, (kx + ) — 6,(c) —Tisqu] + (Ng, +1)

Toy (Kx) 7

Xs[gv(Kx - qx) - Sv(Kx) +ESCIJ_]}- (310)

We can calltg, (x,) the inelastic momentum relaxation time for intra-sub-band scattering.
If Ty is within the rangely < hisq1o and the electron energy is in the ranfig< ¢ (ky) <
(8m*s?>Wp)¥/? then, in the first term in equation (3.10), which corresponds to the absorption
processes, we can pat2 (q,) ~ 1 and neglecksq, in the delta-function argument.
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To derive equation (3.10) we have used in equation (2.13) the property embodied in
equation (3.7). Due to this only the scattering from thestate contributes to the, («,)
and the inelastic momentum relaxation time is equal to the inelastic scattering time. Note
that, for the discussed conditions, this is also true for a degenerate electron gas (due to
equation (3.7)). This means that the expression for the momentum relaxation rate which was
used in [3] is incorrect. As a result the authors [3] have obtained an unphysical result [4]:
a negative transport lifetime of electrons in quantum wires due to their interaction with
acoustic phonons.

In equation (3.9) we have, as in equation (3.2), a set of relaxation times. The
unusual physical peculiarity of equation (3.9) is the combination of the contributions of
inelastic electron—acoustic-phonon scattering (for intra-sub-band transitions) and elastic
scattering (for inter-sub-band transitions) to describe the relaxation of the antisymmetric
function F, (k). Equation (3.9) can be transformed into the form as in equation (3.4),
which describes a single relaxation time, only for the two cases discussed previously. If
electrons populate only the first sub-band= v’ = 1) then equation (3.9) coincides with
equation (3.4) with the momentum relaxation time

1 1

= 3.11
Ti(ky)  Toa(ky) ( )

wheretoi(k,) is given by equation (3.10).

If the productw(q)(2N, + 1) does not depend o, then ¥ (z{;V(k,)) = 0, due to
equation (3.7), and equation (3.9) is transformed into the same form as equation (3.4) with
the momentum relaxation time which is given by

1 1 1

- + )
7, (kx) Tow (k) S T‘Sj) (kx)

(3.12)

This general analysis shows us possible cases in which the antisymmetric collision operator
i F (x,) can be transformed from the integral form in equation (2.13) intoaigebraic

form in equations (3.2) and (3.9), whereby we can introduce the momentum relaxation time
approximation as in equation (3.4). Only in these cases is it possible to obtain analytical
solutions of the Boltzmann equations (2.11) and (2.12). However, the realization of this
possibility depends as well on the form of the symmetric collision operBEy (s, (ky))

from equation (2.14). There are three mathematical reasons which make the expression for
[ Fo, (s, (k) for a 1D electron gas much more complicated than that for a 3D electron gas.
There is first the summation ovef, then the presence of the form factGg, (q, ), which
depends on the transverse compongntather than on the modulus gf and, finally, the
delta-function arguments in equation (2.14), which contain separately the mgdahdits
longitudinal componeng, .

4. The form of the symmetric collision operator for quasi-elastic scattering

As was shown in paper |, the character of the electron—acoustic-phonon interaction depends
on the values of the electron kinetic energy as defined in equations (3.1) and (3.8).
Depending on whether the electron kinetic energy in sub-baisdvithin the range defined
by equation (3.1) or within the range defined by equation (3.8), the symmetric collision
operator in equation (2.14) transforms differently.

To derive these forms let us perform an averaging of the symmetric collision operator
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over the points of constant energy(«,) = ¢, thus

Y T Fou(eu())8 (0 (r) — €)

[Fo,(e) = = (4.1)

D 8(eulier) — &)

This procedure gives the expression

[ Fo,(e) = N (8) I Z Z Z w(q)G2,(q){{Foulew (cx + gl (Ng + 1) — Fou(€)Ng}
X5[8v (Kx + QX) —&— hsq} + {FOU’[gv’(Kx + QX)]Nq - FOv(g)(Nq + D}
X(S[SV/(KX +4g:)—¢ +ESQ]}8(SV(KX) — &) (42)

where we have used the notatiof (¢) for the electron density of states. If the electron
kinetic energy in sub-band is within the range defined by equation (3.%) & %sq.0)

then the electron—phonon interaction is quasi-elastic for intra- and inter-sub-band transitions.
The phonon energlsq is small compared with the electron kinetic eneeggk,) = ¢ — W,

and we can expand the delta-functions in equation (4.2) in a Taylor series:

- d
S[SU'(KX +CIx) —& :Fhsq] = (l:i:hsq

2
%15 (hsq)2 )5[81) (Kx +qy) — €] (4.3)

With these substitutionﬁFOV (¢) becomes
[ Fo,(e) = N ( L ZZS(sUm — &)Y w(g)G2,(q1)
q
X{[FO\J’(g) — Fou(&)](2Ng + 1)d[ev (kx + gx) — €]

_d
+{F0v’[5u’(’(x + CIX)] + FOv(E)}hsqia[gv’(Kx +4qx) — ‘9]

, d?
{FOU [81) (Kx + CIA)] - FOU(S)}ZN + 1) (hSQ) 3[81) (Kx + QX) - 8]}
(4.4)
Further analytical transformation of this expression can be performed only by making some
additional simplifying assumptions concerning the phonon distribution funééipn
4.1. The equipartition approximation

The first natural approximation is based on the equipartition approximation

hsq < Ty (4.5)
T

Ny~ =2 (4.6)
hsq

The case of a rectangular QWI was investigated in [5]. Here we give a more general
treatment. The condition from equation (4.5) holds for the phonons with which the carriers
interact if the lattice temperatur, is defined byTy > hsqio. In fact, in accordance
with paper | (equation (5.24) in I) for the electron kinetic eneegyc,) < Wy we have

g1 > lg.] andg ~ g, < g.10, hence equation (4.5) is realized automaticallygf> hsq, o

holds. If the electron kinetic energy &5(«,) > Wp then|g,| > g1 andg = |g,| >~ 2|«y|.
Substitution of this valugy into equation (4.5) gives us the upper limit for the electron
kinetic energye) (k) < Toz/(8m*s2) to maintain the validity of equation (4.5). Therefore,
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we can state that the equipartition approximation of equation (4.6) is realized within the
high-lattice-temperature region defined By > hsq,0 and for the electron kinetic energy
given by
¢

8m*s2’
This is true as well for the inter-sub-band scattering, as follows from paper | (equations (5.27)
and (5.28) in ).

On combining equations (3.1) and (4.7), we obtain the range of the electron energy
within which both the equipartition and the quasi-elastic approximations are realized:

T?
8m*s2’
Note that, in accordance with equations (2.5) and (4.6), the equipartition approximation is
the case in which the produei(g)(2N, + 1) does not depend of,, SO we can use this

property for transformation of the antisymmetric collision operaftﬁy(fcx).
Making use of the approximation from equation (4.6), we can present equation (4.4) in
the form (see the appendix)

S la [Meave (rve+ )

» (&) By (&)[ Fov (€) — Fo (8)]} : (4.9)

g(ky) < 4.7

@m*s*Wo)? < & —w, <

(4.8)

[ Fo,(e) =

m*
h

0
2m*s?2
Here we have introduced the foIIowing notations:

ZZG (qn «S(svm) £)8[ew (ky + q.) — €]

1 x
A X 4.10
(e) = D0 b(eulicn) — e)[ew (ky + qi) — €] (4.10)
Z Z Giv’(qL)S(gv(Kx) — 8)
B,y = :
() Z Z 8(ev(kx) — &)8[ev (kx + qx) — €]
Kx  4x
(hisq)? d (hsq)? d?
<1_ 2T de T 2 de 2) Slev liex +qx) — €] (4.11)

As one can see, equations (4.9)—(4.11) hold for an arbitrary shape of the quantizing potential.
All dependence of the symmetric collision operaidt, (¢) on this potential is described in
terms of the form factonv,(s) and the electron energy spectrupix, ) which are included
in the coefficientsA,, (¢) and B, (¢).

For rectangular 1D QWI the form factat?,(g.) is given by equations (4.11) and
(4.12) in paper I. To calculate the coefficiemts, (¢) and B, (¢) we can use the following
values of the sums:

2 _ Sun SPP/
2

3 6% and =2 142 ) 2 2y 4 7 i
- vy 1 L% 2 L2

)<p s (4.13)
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The coefficientB,, (¢) in equation (4.9) describes the contribution of the inter-sub-band
scattering only to the relaxation of the distribution functidg,(¢). The second term in
equation (4.9) contains differend®, (¢) — Fo,(¢) and it vanishes when’ = v. We can
neglect in the square brackets of equation (4.11) the second and third terms compared with
the first because the electron energy is within the range defined by equation (4.8) and the
lattice temperature is given bigh > hsqio. As a result these terms are small. This means
that we neglect the quasi-elastic contribution to the inter-sub-band relaxation compared
with what is effectively the purely elastic contribution. It is obvious physically that the
symmetrical part of the distribution functiafy, (¢) in sub-band will be influenced by the
inter-sub-band transitions even in the elastic approximation, which is of course impossible
for the intra-sub-band elastic scattering.

By using equations (4.12) and (4.13) we obtain for the coefficidnige) and B, (¢)

S’ Sy T2R2 [ n? 8y Sy P28,y Sy
AUU/ — 1 nn 1 PP _ 7}’”’[ 1 ﬂ 7& 1 PP
© 8<+2><+2> 2m*[L§2(+2 T2 P2

(4.14)

_ Snn 51717’
By (s) = <1+ 5 ) (1+ 2) . (4.15)

This gives the following final expression for the symmetric collision operator:

~ _ dm*s 1 d 2 Bnn’ 817[7’
[Foue) =~ onoLx;NV/(g){dS{NV,(s){s(l—k 5 )(1+ 5 >

2R [ n? 8y p? S’ dFoy(e) 1
e A 1 “pr" [ 1 nn v *FU’
e 120+ 5) + 1 (05 ) [} (P& + 7o)

Z
Sun 8o
N2 1+ == )1+ 22 )[Fou(e) — Fo, : 4.16
T As)( + 2)( + 20 ) Fov(e) = Fou(©)] (4.16)
The ranges of electron energy and the lattice temperature for which equation (4.16) holds
are just those given byBm*s?Wo)¥2 < ¢ — W, < TZ/(8m*s?) and To > (8m*s2Wp)Y/?,
respectively.

+

4.2. The zero-point lattice approximation

Let us now investigate the low-lattice-temperature case for the same electron energy range
as above defined by equation (3.1). We will assume that

hsq > Ty (4.17)

for the majority of phonons with which the carriers interact. This also means that the lattice
temperature is within the rang® < hsq,0. Because of the deformation acoustic potential

in equation (4.4)w(g) o« ¢, the main contribution to the sum over comes from the
region of largeg. The phonon distribution functiow, appears in equation (4.4) through
the expression (¥, + 1) and, as was shown above, if the lattice temperature is defined
by Ty < hisq.o then, for the terms which correspond to the stimulated scattering processes
and which containv,, the region of actuag is restricted tog < To/(hs). The other term,
which corresponds to the spontaneous emission, does not cantaind thus the region of
actualgq is restricted tag, < g10. The first restrictiong < Tp/(hs), is more severe than

the second one;, < g0, if the lattice temperature is defined By < hisq1o. This means

that, under these conditions, the region ggpace which contributes to the stimulated
scattering processes is small compared with that which contributes to the spontaneous
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scattering processes. As a result we can use the zero-point lattice approximation and put in
equation (4.4)

N, ~0. (4.18)

Equation (4.4) can be transformed into the following expression (see the appendix for

details):
{d [N5 ©) (A (&) Fow (€) + o (8) 210 (©) )}
de &

. dm*s
[Fou(e) = =~ woLs ) =

1
+N§, (8)( 5 D (&)[Fy (e) — F(e)]

w, — W, dFOv’(S)
A O W e — Wl 2 de )} *19
where
1 DO ®q%12m)hsq G2, ()8 (e (ky) — €)8[ey (ke + gx) — ]
Co(e) =1 (4.20)
4 DY 8(enlicr) — &)8[ew (ke + 1) — ]
Kx  qx

1 _ d , &
Duv(e) =53 ) hsqG w/<qu8(ev<xx)—s>{(1 hsq g+ (hsq) )
Kx q

-1

XS[&‘U/ (kx +qx) — 8] }{ Z 28(8V(KX) - 8)8[81}’(/(1«‘ +4qx) — 8]} (421)

Kx  qx

A,y(e) = (2m*s2)l/2 |: o (8, ;) — Gv_v, (8, ;)] (4.22)
Gl (e 5) = 2 0L (

Equations (4.19)—(4.23) are true for an arbitrary shape of the quantizing potential, as
were similar equations (4.9)—(4.11) for the equipartition approximation. However, there
is a difference between equations (4.9) and (4.11). As one can see, the second term in
equation (4.4) does not depend &p and is the same for both approximations (equipartition
and zero point). The first term in equation (4.4), which is proportionattge) — F,(¢),
is transformed in the same manner for both cases. There is only an additional factor
hsq in the coefficientD,, (¢) compared with the coefficienB,, (¢). Note that here we
can also neglect the second and the third terms in the square brackets of equation (4.21).
Transformation of the third term in equation (4.4) gives different general forms for the
discussed approximations. It is shown in the appendix for the equipartition approximation
that this term has the same structure as the second one (see equation (4.9)), but not for
the zero-point lattice approximation. The functi®), (q., ¢.) of equation (A3) in the last
case is equal t®,, (g1, gx) = 3w(q)G2,(q1)(isq)? and the relationship in equation (A2)
does not hold for this function whem # V. As a result we have an additional term in
equation (4.19) which is absent from equation (4.9).

The coefficientsC,,/(¢) and D,/ (¢) can be presented in the form

Cyy(e) = %(M*SZ)W [c‘;jv, <g, g) +G,, (s, zﬂ (4.24)

n/2
WY2+ (e — Wv/)1/2]2> ) (4.23)
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D,y (e) = % (2m*s?)? [ij, (e, ;) + G, (s, ;)} . (4.25)

For the rectangular 1D QWI the form factafv,(ql) is given in paper | (equations (4.11)

and (4.12) in I) and the summation owgr in equations (4.22)—(4.24) cannot be performed
analytically, unlike for the equipartition case, in which we have used equations (4.12) and
(4.13). Due to the presence of fractional powers lif® + ap)"/? (wheren = 1, 3 anday is

some constant) in these expressions, the analytical calculations can be performed only for
some limiting cases. We will consider these cases when we solve the Boltzmann equation.

Regarding the generality of the above expressions for the symmetrical collision operator
[ Fo,(¢), we have to point out that equations (4.9) and (4.19) will remain true (after obvious
modification) for a 2D electron gas interacting with acoustic phonons. (The fagi@@r)
must be replaced everywhere byL,/(2r)? (quantization along the axis is assumed) and
wavevectorse, andg, must be replaced by = (k,, «,) andq; = (gx, g,), respectively).

If we take into account only intra-sub-band processes ('), which is valid if electrons
populate only the first sub-band, thdiFy,(¢) can be presented in the differential form
without making any assumption concerning the phonon distribution funsfjorBy making
use of the relationship equation (A2), we obtain from equation (4.4)

Idm*s 1

A . d 2 ’ dFOv(S)
I Fo,(e) = TwoLxm$ |:NU (e) (Aw(g)Fo,,(s) + CW(S) de >:| (4-26)

whereA,,(¢) is given by equation (4.10) and
. DY G2(g)@Ng + D(R2q?/2m™hsqd (e, (icr) — €)8[ey (ks + ) — €]
C\/;v(g) =7 =1

4 DY 8(enlicr) — &)8[enlicy + gy) — €]

Kx  qx

4.27)

One can see that the coefficie@t, (¢) coincides with the corresponding expressions in
equations (4.9) or (4.19) for the discussed limiting cases. The expression in equation (4.26)
is valid for 1D, 2D and 3D electron gases. For the 3D case it is necessary to replace
andg, by x andg, respectively, and.,/(27) by Vy/(27)2 in equations (4.10), (4.26) and
(4.27), and to put formallyG2 (q) = 1 and Wy = 0.

5. The form of the symmetric collision operator for inelastic scattering

If the electron kinetic energy in sub-bandis within the range defined by equation (3.8)

(e) < hsq.0) then the relaxation of the symmetrical distribution functign(e) is described

both by the inelastic intra-sub-band scattering and by the quasi-elastic inter-sub-band
scattering. It is obvious that, in this case, only sub-bands withk v are involved in

the relaxation ofFy,(¢) and for these sub-bands the electron kinetic energy is within the
range

ey (iy) — Wy > (8m*s?>Wp)Y/? W < ). (5.1)

This is why the electron—acoustic-phonon interaction is quasi-elastic for inter-sub-band
scattering.

We can therefore present the symmetric collision operafgy(¢) in equation (4.2) in
the form

IAFOU(E) = AinelFOV(g) + iquasi-elFOv(g) (52)
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where
IAinelFOU(S) + ivvFOV(S) (53)
Iquusi-elFOv(S) = Z L, Fo,(g) (54)

V' <v

N 1 1
forFou(e) = 7 1 20D S w@ G @) Fovlew (6 + 4] (Ng + 1) = Fou(e)Ny)
v X q

Kx

XS[SV/(KX + qx) — & ESQ] + {FOV/[SU/(KX + qx)]Nq - FOU(E)(Nq + 1)}
X8[8v’ (Kx + q.x) —&+ ESQ)]}(S(%(KX) - 8)- (55)
The expressions for the quasi-elastic collision operator were derived in section 4.
To calculate the inelastic collision operataf;ne, Fo,(¢) we can use the condition
g1 > lq.| (see equation (5.5) in paper I) and put= ¢, in equations (5.3) and (5.5)
for v/ = v. On performing the summation over and«, we obtain

A

IinelFOV(g) =

0 * b 2
(2n)2w0</0 Ny(e +hsq1)G7,(qL)qL
X[FOU(S ‘l'ESQL)(NqL +1) - FOU(S)NqL] qu

(e—Wy)/(hs) . )
+ / No(e — Fisq)G2,(q1)d.
0

<[ Fon(e — s )Ny, — Fou(e) Ny, + D] qu). (5.6)

The upper limit in the second integral in equation (5.6) is defined by the condition that the
density of statesV, (¢ — hsq,) has to be real and positive. Because this term includes the
scattering from the, state of the electron in sub-bamdiue to the emission of the acoustic
phonon, it is obvious physically that the electron cannot emit a phonon with energy that is
larger than its own kinetic energ§isq, < ¢(k,) = ¢ — W,, in agreement with the upper
limit in equation (5.6).

Note that, if the electron energy is defined by equation (3.8) and we can use the
approximationg = ¢, , then this is the case when the produetg )N, andw(q)(Ng + 1)
are not depend og,. We have applied this fact in section 2 to introduce the momentum
relaxation time approximation for the antisymmetric collision operaitﬂr(/cx).

It follows from equation (5.6) that the symmetric collision opera&q;,FoU(a) has an
integral form in contradistinction to the differential form in equations (4.9) and (4.19). This
is the direct result of the inelasticity of the electron—acoustic-phonon interaction under the
discussed conditions. Since the characteristic phonon enesgys< fisq,0, has the same
value as the electron kinetic energy(x,) < (8m*s?>Wp)¥?, we cannot use the expansions
performed in equation (4.3).

When the electron kinetic energy is large enough to be within the range

Bm*s?Wo)Y? < &,(k,) — W, < Wo (5.7)

we can use the approximatian>~ ¢, as before. This means that equation (5.6) remains
valid as well. However, due to presence of the form factor in the integrand we can put
the upper limit in the second integral to infinity. Furthermore, we can use the quasi-elastic
approximation and expand the functiod, (¢ + Zsg,) in a Taylor series. As a result
equation (5.6) is transformed into the differential expression in equation (4.26), where it is
necessary to puj >~ q .

If the electron kinetic energy is within the range

&y(ky) — W, > Wy (5.8)
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then we cannot use the approximatign= ¢,. Equation (5.6) becomes invalid and
instead we have to use equation (4.26). All this means that it is necessary to divide
the symmetrical collision operatcfrFol,(e) into the inelastic and quasi-elastic contributions

as in equation (5.2) only if the electron kinetic energy is within the interval defined by
equation (3.8). It is relevant to note here that equation (5.6) is true for a 2D electron gas
under the same conditions as discussed above.

Now, after detailed investigation of the symmetrical and antisymmetrical collision
operators, we can solve the Boltzmann equations (2.11) and (2.12) for some cases of interest.
Since the forms of these operators are different under different conditions we will consider
in the following paper Il separately the situations of inelastic and quasi-elastic scattering.

6. Summary

In this paper we derived the Boltzmann equation for a non-equilibrium electron gas in a
low-dimensional system interacting with bulk acoustic phonons. In the general case this
equation has a form which depends on the external conditions and the electron energy region
in which the electron distribution is studied.

At low lattice temperatures the Boltzmann equation has an integro-differential form
within a wide range of external electric fields. This is a direct result of the strong inelastic
character of the electron—acoustic-phonon interaction under these conditions. The actual
energy region lies within the first electron sub-band. For larger electric fields, for which
the electrons penetrate into high-energy regions, their interaction with acoustic phonons
becomes quasi-elastic. As a result the Boltzmann equation has a differential form. This is
true both for intra- and for inter-sub-band scattering.

At high lattice temperatures the electron—acoustic-phonon interaction is always quasi-
elastic for the majority of electrons at arbitrary electric fields. The corresponding Boltzmann
equation consists of a set of differential equations for the distribution functions in every
occupied electron sub-band.

An important question for the electron kinetics in a low-dimensional system is when to
use the momentum-relaxation-time approximation for the antisymmetrical collision operator.
We performed a detailed investigation of this question and we have shown that it is
possible to introduce the momentum relaxation time both for strong inelastic and for quasi-
elastic scattering. The corresponding expressions for the momentum relaxation times were
obtained.

An important result was the derivation of a general form for the Boltzmann equation for
low-dimensional electron systems. The final expressions can be applied to three-, two- or
one-dimensional electron gases subjected to an arbitrary quantizing potential. As an example
we applied these expressions to the case of a one-dimensional rectangular quantum well
wire.
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Appendix A. Transformation of equation (4.4) into equation (4.9)

Let us consider separately the second and the third terms in equation (4.4).
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We have for the second term

_ d
D8 = &) Y w@) Gl (quhsq{Fovlew (e + g0l + Fou(e)} 4 Slew (ke +g.) —é]
Ky q

=) 8en(ky) —¢)

d _
X |: ( Z w(q)GEU/(qL)hSqFOU/[Ev’(Kx + Qx)](s[gu’(/(x +4qx) — 8])

de p

d —
+Fos(e) o ( > w@)G2, (quhsqles (ks + qx) — e])]

q
= D 8(eulin) —¢)
d _
X |:[F0v/ () — FOV(E)]dS<2q: w(Q)GEU'(QL)hsq(S[‘CJU/ (kx + CIx) - 8])

dFOv’ (8)
de

Y w(@)G2, (@hsqdley (e + 1) — €]
q

+2Foy () (Z w(@)G?, (g8l (kx +qx) — s])}

— [Fov (e) — Fou(e)] Z Z w(g)G3, (qL)hsqd (e, (kx) — €)

d
Xia[gu’(’(x +qx) — 8]
de
dFo, (e)
+|: de

(Z > w(g)G2, (quRsqd (e, () — £)8[ew (ky + qx) — e])
+Foy (e) (22 D w@)G(@Uhsqden () — &) - a[ev (e + ) — e])]
— [Fov (e) — Foy(e)] Z Z w(q)G3, (qL)hsqs(e,(kcx) — &)

d
X S[SU'(KX +qx) — 8]
de

NU(S) d <Nv’(8)
Ny () de

NV(S) ; Xq: w(Q)GEUr(QL)ESQS(SV(/@) - 8)

XS[EV’ (kx +qx) — 8] FOV’(8)>- (Al)

Here in the final stage of the transformation we have used the following relationship:

d /N,
de < Nu((j)) Z Z D, (g1 )8 (e, (k) — €)8[ey (kx + qx) — a])

N ()

= N (8) Z Z chu (QJ_ qu)(S(gv(Kx) (S[EV (Kx + qx) — 8] (A2)

where
(g1, q:) = w(q)G2, (g )hsq. (A3)
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It can be proved by direct calculation thatyit= V', then equation (A2) holds for an arbitrary
even or odd functiorb,, (q., g.) of g,. If v £/, it does not hold and it depends on the
particular form of this function. For the deformation acoustic potential in accordance with
equation (2.5w(q) = wog and ®,,/(q., ¢:) = wohsG2,(q.)(¢% + q?). Equation (A2) is
realized for this function and we applied this in equation (Al).

For the third term in equation (4.4) we obtain

1_
D) — ) D w(@)GF (1) 5 (sq)* Ny + D Foulew (ke + g0 = Fou(e))
q

2
X 728[81/(/% +4qx) — 8]

1_
= [For(e) = Fou ()] ) > S w(@)G},(q1) 5 (s q)*(2Ng + Db (e (k) — &)
, X q
X —5[8U/(Kx +qy) — €]

d? FV 1_
[ o0 (#) (ZZw(q) (@) Fisq)* 2Ny + 1)

x8(&y(Ky) — 8)5[8v’(Kx +4qx) — 8])

d Foy 1
i (8)< Zzw(q)G (QL)é(hSq)Z(ZNq-k]_)

2

d
x8(&y(Ky) _8)d7828[8v’(’(x +qx) _8]>i|' (A4)

For the equipartition approximatioV, ~ Ty/(hsq) and as a result the expression
in large square brackets in equation (A4) has the same structure as the corresponding
term in equation (Al). Then we can use equation (Al) to obtain the final expression
for equation (A4) in the form
2

_ d
[Fov (&) = Fou(@)]To ) 3 S w(@) Gl (q0)hsqd(eu(iee) — ) 4 50lew (ke + ) — e]

Ky q
Ny(e) d [ Nye) _
TN o) e < Wo(e) 2 2 V@G @S erkn) — )

X8[8v (kx +qx) — 8] (A5)

dFOv (8)
de
By substituting equations (Al) and (A5) into equation (4.4) and using the definition
of the density of states from equation (3.4), we have obtained equation (4.9) with the
coefficientsA,, (¢) and B, (¢) which are given by equations (4.10) and (4.11), respectively.
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